
Relational Model
CSE462 Database Concepts

Demian Lessa

Department of Computer Science and Engineering
State University of New York, Buffalo

January 21–24, 2011



Next...

1 Relational Model

Lessa Relational Model :: CSE462 Database Concepts 2 / 30



Data Model

A data model is a set of concepts used to describe the structure of the
data and the constraints it should obey. It also provides operations for
data retrieval and modification.
In database design, we typically use three different data models.

Conceptual: concepts are closer to the way users perceive them.
Logical: falls between the other two, balancing user views with some
representation details.
Physical: representation details such as data organization on disk,
available access methods, etc.

Lessa Relational Model :: CSE462 Database Concepts 3 / 30



Data Model

Why do different data models?
Requirements Analysis

Determines data, applications, critical operations, etc.

Conceptual Design
High-level description of data and constraints (e.g., ERM).

Logical Design
Conversion of the conceptual design into a database schema.

Schema Refinement
Redundancy elimination through a process called normalization.

Physical Design
Considers workloads, indexes, clustering/partitioning, etc.

Application and Security Design. . .

Lessa Relational Model :: CSE462 Database Concepts 4 / 30



Overview

Relational Model (1970)

Originally proposed by Ted Codd.

Separates physical implementation from conceptual view.
Models data independently from its intended or actual use.

Describes data both minimally and mathematically.
A relation describes an association between data items– tuples with
attributes.

Uses standard mathematical (logical) operations over the data– relational
algebra or relational calculus.

Lessa Relational Model :: CSE462 Database Concepts 5 / 30



Definitions

The relational model represents data as two-dimensional relations.

title year length genre
Gone With the Wind 1939 231 drama
Star Wars 1977 124 scifi
Wayne’s World 1992 95 comedy

Table: The Movies relation.

Each row in the Movies relation represents a movie and each column
a movie property. Every column header is an attribute.

A relation schema consists of a relation name and a set of attributes.
Notation: Movies(title, year, length, genre).

A database schema is the set of all relation schemas in the database.

Lessa Relational Model :: CSE462 Database Concepts 6 / 30



Definitions (cont.)

Every relation attribute is associated with a domain, an elementary
type such as int or string. Domains may optionally be included in
relation schemas:

Movies(title : string,year : int,length : int,genre : string)

Rows of a relation are called tuples. A tuple has one component for
each relation attribute. Every tuple component must have a value that
belongs to the corresponding column’s domain or is NULL (NULL is not
a value!). The arity of a tuple is the number of components in the tuple.
Notation: (‘Gone With the Wind’, 1939, 231, ‘drama’).

Lessa Relational Model :: CSE462 Database Concepts 7 / 30



Definitions (cont.)

Attributes in a relation schema are a set. A standard order may be
specified or else the given order is used.

Relations are sets of tuples, so presentation order is irrelevant.

Attributes may be reordered without changing the relation, but tuple
components must be reordered accordingly.

In how many different ways can the Movies relation be presented?

year genre title length
1939 drama Gone With the Wind 231
1977 scifi Star Wars 124
1992 comedy Wayne’s World 95

Table: Alternate presentation of the Movies relation.

Lessa Relational Model :: CSE462 Database Concepts 8 / 30



Schemas and Instances

A relation instance is the set of tuples of a given relation.

Instances usually change over time as users insert, delete, and update
data. Conventional databases maintain one version of each relation:
the current instance. A database instance is the set of all relation
instances in the database.

Relation schemas change much less frequently. When modifying a
relation schema, all tuples in the relation must be rewritten to
accomodate the changes. It may be difficult or impossible to generate
appropriate values for new components in existing tuples.

Users formulate queries against a database schema. Queries are
validated against the database schema and evaluated against the
database instance.

Lessa Relational Model :: CSE462 Database Concepts 9 / 30



Key Constraint

A set of attributes forms a key for a relation if no two tuples in a relation
instance are allowed to have the same values in all key attributes.
Notation: Movies(title, year, length, genre).

A key is minimal if the set obtained by removing any attribute from the
key is no longer a key.

A relation may have multiple keys. It may also have no natural key, in
which case an artificial (synthetic) one may be created.
How would you identify:

a university student?
a company employee?
a driver?
an automobile?

Lessa Relational Model :: CSE462 Database Concepts 10 / 30



Required

Read sections 2.1 and 2.2 of chapter #2.

Review the movies database schema of section 2.2.8.

Lessa Relational Model :: CSE462 Database Concepts 11 / 30



Exercise 2.2.1

The relations below constitute part of a banking database.

acctNo type balance
12345 savings 12000
23456 checking 1000
34567 savings 25

Table: The Accounts relation.

firstName lastName idNo account
Robbie Banks 901-222 12345
Lena Hand 805-333 12345
Lena Hand 805-333 23456

Table: The Customers relation.

Specify:
The attributes of each relation.
The tuples of each relation.
The components of the first tuple of each relation.
The relation schema for each relation.
The database schema.
A suitable domain for each attribute.
Another equivalent way to present each relation.

Lessa Relational Model :: CSE462 Database Concepts 12 / 30



Exercise 2.2.3:

Considering orders of tuples and attributes, how many different ways are
there to represent a relation instance if the instance has:

Three attributes and three tuples?

Four attributes and five tuples?

n attributes and m tuples?

Lessa Relational Model :: CSE462 Database Concepts 13 / 30



Classwork #1

Web Page Day Hits
index.html 2011-01-21 18
schedule.html 2011-01-21 12
syllabus.html 2011-01-21 11
index.html 2011-01-22 18
schedule.html 2011-01-22 9
syllabus.html 2011-01-22 6

Web Statistics: Snapshot of our course’s web site statistics.

1 Specify a schema for WebStats.
Include attribute names, their domains, and a minimal key.

2 Can (“index.html”, 2011-01-22, 15) be inserted into WebStats?
Justify your answer based on your answer above.

Lessa Relational Model :: CSE462 Database Concepts 14 / 30



SQL

Structured Query Language (SQL) is a standardized language used
to specify and manipulate relational databases. It consists of a data
definition language (DDL) and a data manipulation language (DML).
The current standard is SQL:2008.

SQL defines three kinds of relation– stored relations (tables),
computed relations (views), and temporary tables.

Lessa Relational Model :: CSE462 Database Concepts 15 / 30



SQL: Creating Tables

The CREATE TABLE command creates a table by specifying its schema
and optional constraints. Simplified syntax:

CREATE TABLE tableName (
attr1 type1 [colum_constraint [...]],
...
attrN typeN [colum_constraint [...]]
[, table_constraint]
[, ...]

);

Constraints may be specified either as part of an attribute declaration
(column constraint) or provided after all attribute declarations (table
constraint). Certain constraints must be specified as column constraints
(DEFAULT, NOT NULL) while others as table constraints (multi-column
constraints).

Lessa Relational Model :: CSE462 Database Concepts 16 / 30



SQL: Data Types

SQL data types (not extensive).
BIT(n), BIT VARYING(n)

Bit strings of fixed or varying length.

BOOLEAN
Logical values, with three truth values: TRUE, FALSE, UNKNOWN.

CHAR(n), VARCHAR(n)
Character strings of fixed or varying length.

DATE, TIME, TIMESTAMP.
Temporal values consisting of date, time, or date-and-time:

Numbers
INT (also INTEGER), SMALLINT: integers.
FLOAT (also REAL): single-precision real numbers.
DECIMAL(n,d): higher precision real numbers, where n is the number of
decimal digits and d is the number of significant digits to the right of the
decimal point.

Lessa Relational Model :: CSE462 Database Concepts 17 / 30



SQL: Constraints

Specifying NOT NULL, DEFAULT, and CHECK constraints using the CREATE
TABLE command:

CREATE TABLE tableName (
attr1 type1 [[NOT] NULL] [DEFAULT val1] [CHECK(expr1)],
...
attrN typeN [[NOT] NULL] [DEFAULT valN] [CHECK(exprN)]
[, [CONSTRAINT chk_name] CHECK(expr)]
[, ...]

);

Constraints:
NOT NULL: tuples must have a value for that attribute at all times.
DEFAULT: the value a tuple component takes if no value is supplied at
insertion. If no default value is specified, NULL is used.
CHECK: the boolean expression must evaluate to TRUE or UNKNOWN for all
tuples at all times. The expression for a column constraint may only
reference that column, but multiple columns for a table constraint.

Lessa Relational Model :: CSE462 Database Concepts 18 / 30



SQL: Constraints (cont.)

Specifying PRIMARY KEY and UNIQUE constraints using the CREATE
TABLE command:

CREATE TABLE tableName (
attr1 type1 [PRIMARY KEY] [UNIQUE],
...
attrN typeN [PRIMARY KEY] [UNIQUE]
[, [CONSTRAINT pk_name] PRIMARY KEY(attr_list)]
[, [CONSTRAINT uc_name] UNIQUE(attr_list)]
[, ...]

);

Keys may be declared as PRIMARY KEY or UNIQUE.
No two tuples in a relation instance may agree on their key attribute
values, unless one of those is NULL.
None of the attributes in a PRIMARY KEY may be assigned NULL.
A table may have at most one PRIMARY KEY but multiple UNIQUE keys.
Multi-attribute keys must be declared as table constraints.

Lessa Relational Model :: CSE462 Database Concepts 19 / 30



Example #1

The Movies relation, specified with column constraints:

CREATE TABLE Movies (
title VARCHAR(100) PRIMARY KEY,
year INT NOT NULL CHECK(year > 1900),
length INT CHECK(length > 0),
genre VARCHAR(10) DEFAULT ‘unknown’

);

The Movies relation, specified with table constraints:

CREATE TABLE Movies (
title VARCHAR(100),
year INT NOT NULL, -- must be defined here
length INT,
genre VARCHAR(10) DEFAULT ‘unknown’, -- this one too
CONSTRAINT pkMovies PRIMARY KEY(title),
CONSTRAINT chkYearLength CHECK(year > 1900 AND length > 0)

);

Lessa Relational Model :: CSE462 Database Concepts 20 / 30



SQL: Constraints (cont.)

A FOREIGN KEY constraint identifies a set of attributes in a referencing
table that refers to a set of attributes in a referenced table. Attributes
must be type compatible but need not have the same names. Attributes
in the referenced table must be a unique or primary key constraint.

Semantics:
For every tuple t in the referencing table, there exists a unique tuple t ′ in
the referenced table such that the referencing attribute values in t match
(except NULL) the referenced attribute values in t ′.

Observation
Usually, multiple referencing tuples may refer to the same referenced tuple,
reflecting a one-to-many relationship between the tables– the referenced
table is the master (“one”) and the referencing table is the child (“many”).

Lessa Relational Model :: CSE462 Database Concepts 21 / 30



SQL: Constraints (cont.)

Specifying FOREIGN KEY constraints using the CREATE TABLE command:

CREATE TABLE tableName (
attr1 type1 [REFERENCES refTable (attr_list)],
...
attrN typeN [REFERENCES refTable (attr_list)]
[, [CONSTRAINT fk_name] FOREIGN KEY(attr_list)

REFERENCES refTable (attr_list)]
[, ...]

);

Lessa Relational Model :: CSE462 Database Concepts 22 / 30



Example #2

The State relation: US state names and abbreviations.

CREATE TABLE State (
state CHAR(2) PRIMARY KEY,
name VARCHAR(30) UNIQUE

);

The City relation: US cities and their associated states and populations.

CREATE TABLE City (
cid INT PRIMARY KEY,
name VARCHAR(100),
state CHAR(2),
population NUMERIC CHECK(population > 1000),
CONSTRAINT ucNameState UNIQUE(name,state), -- named
FOREIGN KEY(state) REFERENCES State(state) -- unnamed

);

Lessa Relational Model :: CSE462 Database Concepts 23 / 30



SQL: Modifying Schemas

The DROP TABLE command removes a table from the database,
including all its tuples:

DROP TABLE tableName;

The ALTER TABLE command allows attributes to be added (1) or
dropped (2) from a table:

1 ALTER TABLE tableName ADD attr dataType;
2 ALTER TABLE tableName DROP attr; -- by name

The ALTER TABLE command also allows constraints to be added (1) or
dropped (2) to a table. For example:

1 ALTER TABLE Movies ADD PRIMARY KEY (title, year);
2 ALTER TABLE Movies DROP CONSTRAINT pkMovies; -- by name

Lessa Relational Model :: CSE462 Database Concepts 24 / 30



Required

Read section 2.3 of chapter #2.

Answer exercises 2.3.1 and 2.3.2.

Lessa Relational Model :: CSE462 Database Concepts 25 / 30



Classwork #2

Consider a data model in which all data is modeled as trees. Each tree
node has at most one unique parent and may contain arbitrary
amounts of string data. Define a relational schema for this model.

Lessa Relational Model :: CSE462 Database Concepts 26 / 30



Classwork #2 (cont.)

Alternative #1: each node has any number of data values.
Node(nid, parentid)
Data(nid, data)
Except for Node.parentid, all fields are NOT NULL.
Data.data is a string, all other fields are integers.

Alternative #2: each node has any number of key/data pairs.
Node(nid, parentid)
Data(nid, key, data)
Except for Node.parentid, all fields are NOT NULL.
Data.key and Data.data are strings, all other fields are integers.

Alternative #3: ancestry information implicitly encoded.
Node(nid, parentid, ibegin, iend)
Data(nid, key, data)
All fields are NOT NULL.
Node.ibegin and Node.iend are reals, Node.ibegin < Node.iend.
Data.key and Data.data are strings, all other fields are integers.

Lessa Relational Model :: CSE462 Database Concepts 27 / 30



Classwork #2 (cont.)

Alternative #1: each node has any number of data values.
Node(nid, parentid)
Data(nid, data)
Except for Node.parentid, all fields are NOT NULL.
Data.data is a string, all other fields are integers.

Alternative #2: each node has any number of key/data pairs.
Node(nid, parentid)
Data(nid, key, data)
Except for Node.parentid, all fields are NOT NULL.
Data.key and Data.data are strings, all other fields are integers.

Alternative #3: ancestry information implicitly encoded.
Node(nid, parentid, ibegin, iend)
Data(nid, key, data)
All fields are NOT NULL.
Node.ibegin and Node.iend are reals, Node.ibegin < Node.iend.
Data.key and Data.data are strings, all other fields are integers.

Lessa Relational Model :: CSE462 Database Concepts 27 / 30



Classwork #2 (cont.)

Alternative #1: each node has any number of data values.
Node(nid, parentid)
Data(nid, data)
Except for Node.parentid, all fields are NOT NULL.
Data.data is a string, all other fields are integers.

Alternative #2: each node has any number of key/data pairs.
Node(nid, parentid)
Data(nid, key, data)
Except for Node.parentid, all fields are NOT NULL.
Data.key and Data.data are strings, all other fields are integers.

Alternative #3: ancestry information implicitly encoded.
Node(nid, parentid, ibegin, iend)
Data(nid, key, data)
All fields are NOT NULL.
Node.ibegin and Node.iend are reals, Node.ibegin < Node.iend.
Data.key and Data.data are strings, all other fields are integers.

Lessa Relational Model :: CSE462 Database Concepts 27 / 30



Classwork #2

Can you define a simplified relational schema that encodes a relational
database?

Tip #1: consider only two relations– one that encodes relation
schemas and one that encodes relation instances.

Tip #2: assume that schemas consist of relations names with their
attributes names and type names.

Lessa Relational Model :: CSE462 Database Concepts 28 / 30



Classwork #2

Can you define a simplified relational schema that encodes a relational
database?

Tip #1: consider only two relations– one that encodes relation
schemas and one that encodes relation instances.

Tip #2: assume that schemas consist of relations names with their
attributes names and type names.

Lessa Relational Model :: CSE462 Database Concepts 28 / 30



Classwork #2

Can you define a simplified relational schema that encodes a relational
database?

Tip #1: consider only two relations– one that encodes relation
schemas and one that encodes relation instances.

Tip #2: assume that schemas consist of relations names with their
attributes names and type names.

Lessa Relational Model :: CSE462 Database Concepts 28 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.

RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?

RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.

Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?

In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Proposed solution:
RelSchema(relname, attr_name, attr_type)
RelInstance(relname, attr_name, tid, data)

Now answer:
Why do we need RelInstance.tid? RelInstance.attr_name?

RelInstance.tid uniquely identifies a tuple within a relation instance.
RelInstance.attr_name uniquely identifies a component within a tuple.

Which fields, if any, would you declared as NOT NULL?
RelSchema.attr_type: all attributes must have a type.
RelInstance.data: no need to assign NULL, simply omit the component.
All other fields are part of primary keys.

Would you specify a foreign key for this schema? Explain.
Yes. RelInstance references RelSchema on {relName, attr_name}.
Only data associated with some schema element would be recorded.

Is it possible to enforce constraints at the database level?
In a nutshell: no, it must be enforced on the application side.
Longer: advanced features and/or sophisticated encodings may help (in part).

Lessa Relational Model :: CSE462 Database Concepts 29 / 30



Classwork #2 (cont.)

Feeling adventurous?

In the Object-Oriented model, data is modeled as objects. Each object
belongs to a type (its class), may inherit from one (or more) types, and
has a fixed number of typed attributes. Can you come up with a
relational schema that encodes an Object-Oriented database?

Lessa Relational Model :: CSE462 Database Concepts 30 / 30


	Relational Model

