
April 28, 2011 CSE 462, Stored Proceduers and Triggers

CSE 462 Homework #7 (Optional): Stored Proceduers and Triggers

Name: Date: April 28, 2011

***** Submit electronically on May 06, 2011 no later than 11:59pm. *****

This problem set is worth 250 points. You must type your answers.

1. (50pts) Read sections 9.2, 9.3, and 9.4 of the textbook and skim through the following sections of the PostgreSQL
documentation for an overview of some features supported by this DBMS. Then, provide short answers for the given
questions.

http://www.postgresql.org/docs/current/static/xfunc-sql.html

http://www.postgresql.org/docs/current/static/xfunc-overload.html

http://www.postgresql.org/docs/current/static/xfunc-volatility.html

http://www.postgresql.org/docs/current/static/plpgsql.html

http://www.postgresql.org/docs/current/static/sql-createfunction.html

http://www.postgresql.org/docs/current/static/triggers.html

http://www.postgresql.org/docs/current/static/sql-createtrigger.html

a) What is a stored procedure (function)?

b) Explain the difference between the volatility categories of PostgreSQL functions.

c) Give examples of volatile, stable, and immutable functions in PostgreSQL.

d) What is a cursor?

e) What is a trigger?

f) Explain the difference between BEFORE and AFTER triggers.

g) Explain the difference between row-level and statement-level triggers (FOR EACH ROW and FOR EACH STATEMENT
syntax, respectively).

h) What is the relationship between triggers and functions?

2. (100pts) For each statement below, say whether it is true or false. Then, justify your answer with either an
example or a short explanation.

a) Stored procedures can be invoked from user programs, e.g., using JDBC in Java.

b) Multiple SQL statements can be encapsulated in a single stored procedure.

c) Stored procedures can be used to implement complex business logic.

d) Stored procedures and triggers can be combined to keep a complex report table up-to-date.

e) Using a volatile function in a query is always more efficient than using a stable function.

f) A cursor provides an efficient way to traverse a large set of data, avoiding certain memory problems.

g) The use of a function in a query does not affect the way the query engine selects a plan for executing the query.

h) If a table has a table-level a complex invariant, that cannot be enforced through CHECK, PRIMARY KEY, or
FOREIGN KEY constraints, it may be possible to implement the invariant check via a trigger on the table.

i) PostgreSQL allows triggers to be fired based on a pre-defined condition.

j) A trigger may cause itself to fire recursively.

1

April 28, 2011 CSE 462, Stored Proceduers and Triggers

3. (100pts) The goal of this exercise is to implement a trigger/function based solution to maintain a couple derived
tables in a database. First, run the script below, which will create the “usual” tables as well as the ones where the
derived data will reside.

CREATE TABLE customers (
cId SERIAL NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL

);

CREATE TABLE products (
sku INT NOT NULL PRIMARY KEY,
product VARCHAR(100) NOT NULL,
unitPrice NUMERIC(10,2) NOT NULL CHECK(unitPrice > 0),
unitWeight NUMERIC(10,2) NULL CHECK(unitWeight > 0)

);

CREATE TABLE orders (
oId SERIAL NOT NULL PRIMARY KEY,
cId INT NOT NULL REFERENCES customers(cId),
orderDate DATE NOT NULL CHECK(orderDate > ’2010-01-01’)

);

CREATE TABLE orderEntries (
oId INT NOT NULL REFERENCES orders(oId),
sku INT NOT NULL REFERENCES products(sku),
qty INT NOT NULL CHECK(qty > 0),
CONSTRAINT pkOrderEntries PRIMARY KEY (oId, sku)

);

-- statistics for each customer
CREATE TABLE summary_customers (
cId INT NOT NULL,
ordersPlaced INT, -- count of orders placed
grossValue NUMERIC(10,2), -- sum of gross value over all order entries
averageValue NUMERIC(10,2), -- average order gross value over all orders
lastOrder DATE -- date of the last order

);

-- statistics for each product
CREATE TABLE summary_products (
sku INT NOT NULL,
ordersPlaced INT, -- count of orders
unitsOrdered INT, -- sum of qty over all orders
grossValue NUMERIC(10,2), -- sum of gross value over all orders
averageValue NUMERIC(10,2), -- average of gross value over all orders
lastOrder DATE -- date of the last order

);

-- statistics for each order
CREATE TABLE summary_orders (
oId INT NOT NULL,
entryCount INT, -- count of entries
totalItems INT, -- sum of qty over all entries
totalWeight NUMERIC(10,2), -- sum of qty*unitWeight over all entries
grossValue NUMERIC(10,2) -- sum of qty*unitPrice over all entries

);

2

April 28, 2011 CSE 462, Stored Proceduers and Triggers

Create the necessary trigger functions and trigger definitions in order to maintain all summary tables up-to-date. The
computations should be incremental. If you cannot compute something incrementally, please justify. Note that you
will need to create triggers on both orders and orderEntries, as some summary information depends on orders,
and some on orderEntries. You will get 30% of the points for INSERT triggers, 40% for UPDATE triggers, and
30% for DELETE triggers.

3

